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Eight pigeons were trained in a concurrent-chains procedure in which the terminal-link immediacy
ratio followed an ascending or descending series. Across sessions, one terminal-link delay changed from
2 s to 32 s to 2 s or from 32 s to 2 s to 32 s, while the other was always 8 s. For all pigeons, response
allocation tracked changes in delay and was biased towards the 8-s alternative on the descending series,
indicating a hysteresis effect, and was more sensitive to changes in the terminal-link delay ratio for
relatively long (. 8 s) than short (, 8 s) delays. Both the hysteresis and effect of delay duration were
predicted by an extended version of Grace and McLean’s (2006) decision model. The extended
decision model provided an overall better account of the results than a simple linear-operator model
(Grace, 2002), and holds promise for an integrated account of choice in concurrent chains for both
acquisition and steady-state conditions.
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_______________________________________________________________________________

Traditional research on behavioral choice
has used steady-state designs in which subjects
are trained with a particular set of contingen-
cies until response allocation stabilizes (e.g.,
Herrnstein, 1961; see Davison & McCarthy,
1988, for review). A variable such as the
relative rate or immediacy of reinforcement
across the alternatives is then varied paramet-
rically across conditions. Results from these
experiments are typically well described by
models based on the matching law, which in its
most general form states that response alloca-
tion matches the relative value obtained from
the choice alternatives (Baum & Rachlin,
1969). For concurrent chains, such models
include delay-reduction theory (Fantino, Pres-
ton & Dunn, 1993), the contextual choice
model (Grace, 1994), and the hyperbolic-value
added model (Mazur, 2001). These models
differ in terms of specific details, but all share
the assumption that initial-link response allo-
cation in concurrent chains matches the
relative value associated with the terminal
links.

However, there is a growing literature on
acquisition of choice—how response alloca-

tion changes when the reinforcement contin-
gencies are altered (e.g., Davison & Baum,
2000; Mazur, 1992, 1995, 1996; Mazur, Blake,
& McManus, 2001). An important question is
whether the principles that describe choice at
the steady-state level—such as the assumption
that response allocation matches relative val-
ue—also apply to choice in transition. For
example, Grace (2002) trained pigeons on a
concurrent-chains procedure in which the
location of the shorter terminal-link schedule
was changed every 20 sessions. Across condi-
tions, he studied transitions between different
combinations of terminal-link schedules. He
found that acquisition of preference was well
described by a simple linear-operator model
(LINOP). The LINOP model incorporated the
basic assumption of the matching law, that is,
that response allocation matched the relative
value of the terminal-link schedules. Also, the
asymptotic value of a schedule (i.e., after
sufficient exposure to the schedule) was
defined as a function of the distribution of
delays to reinforcement (Shull, Spear, &
Bryson, 1981)—which is a common assump-
tion for models of steady-state choice (cf.
Mazur, 1984, 2001; Grace, 1996). Third, the
model assumed that when the terminal links
were changed, value was updated according to
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a linear-operator rule:

DVnz1~r Vasymp{Vn

� �
ð1Þ

According to Equation 1, the change in
value for cycle n+1 is a constant proportion of
the difference between the asymptotic value
and the value on cycle n. Grace (2002) showed
that the LINOP model made more accurate
predictions than a competing memory-repre-
sentational model. The important point to
emphasize is that the LINOP model is based
on assumptions which are common to steady-
state models: matching to relative value, with
value determined as a function of the rein-
forcer delay distribution.

Several studies on choice acquisition have
used a procedure originally devised by Hunter
and Davison (1985), in which reinforcement
contingencies change unpredictably across
sessions according to a pseudorandom binary
series (PRBS). Effectively, a PRBS series
ensures that the reinforcer ratio in the current
session cannot be predicted from those in
prior sessions. This research has shown that
choice responding can adjust very rapidly to
changes in reinforcement contingencies, and
stimulated the development of models which
are not explicitly derived from steady-state
accounts of choice.

For example, Schofield and Davison (1997)
showed that pigeons’ response allocation in
concurrent variable-interval (VI) VI schedules
tracked changes in the reinforcer ratio when
ratios changed daily according to a 31-step
PRBS. They conducted a multiple regression
analysis and showed that the coefficient that
measured sensitivity to the reinforcer ratio was
significant and positive for the current session
(i.e., Lag 0), but was not significant for the
preceding nine sessions (Lag 1 through Lag
9), after three PRBS presentations (93 ses-
sions). Thus, response allocation was con-
trolled by the reinforcer ratio arranged in
the current session with virtually no effect
from prior sessions. Because cumulative sensi-
tivity levels were similar to those obtained in
past research (Baum, 1979), Schofield and
Davison suggested that the PRBS design might
present an attractive alternative to steady-state
designs. However, their procedure is poten-
tially even more important in terms of
providing a rich dataset—an acquisition curve

in each session—which presumably reflects the
same response-generating process that deter-
mines choice in steady-state designs. If so, it is
possible that understanding how response
allocation adapts to a variable environment
may provide insights into steady-state phenom-
ena such as matching.

Grace, Bragason, and McLean (2003) ap-
plied the PRBS design to the concurrent-
chains procedure to study acquisition of
choice between delayed reinforcers. In con-
current chains, subjects respond during a
choice phase (initial links) to produce one of
two mutually-exclusive outcome schedules
which end with reinforcer delivery (terminal
links). The relative reinforcer immediacy
during the terminal links (i.e., ratio of the
reciprocal of the reinforcer delays) is a major
determiner of response allocation during the
initial links; Grace (1994) showed that an
extension of the generalized matching law
(Baum, 1974; Davison, 1983) that assumes
subjects’ relative initial-link response rates
match the relative value of the terminal-link
schedules, with value determined as a power
function of the immediacy ratio, provides an
excellent account of response allocation in
concurrent chains (cf. Mazur, 2001).

In Grace et al.’s (2003) Experiment 1, the
terminal-link schedule associated with the left
alternative was always fixed interval (FI) 8 s,
while the right terminal-link schedule changed
between FI 4 s or FI 16 s across sessions
according to a 31-step PRBS. Grace et al.
conducted a multiple regression analysis similar
to Schofield and Davison’s (1997) and found
that initial-link response allocation was most
sensitive to the immediacy ratio in the current
session. The average Lag 0 sensitivity coefficient
was 1.04, and varied between 0.47 and 1.84
across subjects. Although these values are lower
than those generally obtained in steady-state
research (see Grace, 1994, for review), Grace et
al.’s results show that response allocation
tracked unpredictable daily changes in the
terminal-link immediacy ratio.

The same subjects served in Grace et al.’s
(2003) Experiment 2, in which a different
value for the right terminal link FI schedule
was used in each session while the left terminal
link remained FI 8 s. Schedule values for the
right terminal link varied between 2 s and 32 s,
and were determined pseudorandomly such
that the log immediacy ratios were uniformly
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distributed between log(1/4) and log(4), with
the location of the shorter terminal link for
each session determined by the PRBS. Thus,
the average log immediacy ratio for sessions in
which the shorter terminal link was associated
with the right (or left) alternative was the same
as in Experiment 1 (i.e., log[1/2] or log[2]).
Grace et al. found that sensitivity to immediacy
did not differ systematically from Experiment
1, suggesting that whether the changing
terminal-link schedule took either two (Exper-
iment 1) or a potentially unlimited number of
values (Experiment 2) did not affect sensitivity
to the immediacy ratio. Also interesting was
that for one pigeon the relationship between
the log initial-link response ratio and the log
immediacy ratio for the current session (as
shown in a generalized-matching scatterplot)
was nonlinear, with data points falling into two
clusters. Grace et al. suggested that a process
similar to categorical discrimination might
have determined responding for this pigeon.

Grace and McLean (2006) provided a
stronger test of whether the degree of varia-
tion in delays affected sensitivity to immediacy
in concurrent chains when the position of the
richer terminal-link changed across sessions
according to a PRBS. They compared sensitiv-
ity in a ‘‘minimal variation’’ condition that was
identical to Grace et al.’s (2003) Experiment 1
in which one terminal link was constant (FI
8 s) while the other was either FI 4 s or FI 16 s,
with a ‘‘maximal variation’’ condition in which
a different pair of terminal-link schedules was
used in every session. In both conditions, the
average log immediacy ratio for sessions in
which the richer terminal link was associated
with the left (or right) key was log(2) (or
log[1/2]). Each condition consisted of three
PRBS presentations (93 sessions), and the
order was counterbalanced. They found that
response allocation tracked the current-session
immediacy ratio in both conditions, but that
across subjects there was no systematic differ-
ence in sensitivity to immediacy. Additionally,
in the maximal-variation condition the scatter-
plot of the log initial-link response ratio as a
function of the log immediacy ratio was
nonlinear (sigmoidal) for one pigeon in the
third PRBS presentation and for a second
pigeon when the condition was replicated,
again suggesting a categorical discrimination.
However, in other cases scatterplots were
approximately linear (including the third

PRBS presentation for the subject whose data
were nonlinear in the replication), consistent
with a traditional generalized-matching model.
The sigmoidal relation in generalized-match-
ing scatterplots for pigeons responding under
rapid-acquisition conditions has recently been
replicated by Kyonka and Grace (2007, 2008).

Grace and McLean (2006) proposed a
decision model that could account for re-
sponse allocation consistent with both gener-
alized matching and categorical discrimina-
tion. Their model assumes that response
allocation is determined by the relative re-
sponse strength of the initial-link schedules
(i.e., the relative propensity to respond to each
alternative). Response strength for a particular
initial link is updated after reinforcement has
been obtained in the preceding terminal link,
depending on the duration of the terminal-
link delay. According to the model, subjects
make a ‘‘decision’’ as to whether the preced-
ing delay was short or long relative to the
history of reinforcement delays across both
alternatives. If the delay is judged as short,
response strength for the associated initial link
increases; if the delay is judged as long then
response strength decreases. Changes in re-
sponse strength are made according to a
linear-operator rule (with parallel equations
for left and right alternatives):

RSnz1~RSnzps � MaxRS -RSnð Þ
�D{ 1-psð Þ � RSn{MinRSð Þ � D ð2Þ

According to Equation 2, RSn+1 (expected
response strength for cycle n+1) is determined
by response strength on the previous cycle
(RSn), modified by an additive (or subtractive)
term, depending on whether the delay was
judged as short (or long). Specifically, if the
previous delay was judged as short (with
probability ps), the response strength increases
by a constant fraction (determined by a
learning rate parameter, D) of the difference
between the maximum response strength
(MaxRS) and current response strength. Con-
versely, if the previous delay was judged as long
(with probability 1-ps), response strength de-
creases by a constant fraction of the difference
between the current and minimum response
strength (MinRS). Whether a delay is classified
as short or long depends on a comparison with
the distribution of delays experienced across
both alternatives. To represent the history of
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reinforcement delays, the model uses a log
normal distribution with a mean (criterion)
equal to the log geometric mean of the
experienced delays. The probability that a delay
is judged short is the area under the distribu-
tion to the right of the delay. The standard
deviation of the distribution (s) is a parameter
and determines the accuracy with which delays
are classified as short or long.

Grace and McLean (2006) showed that their
model could predict response allocation that
conformed to generalized matching or cate-
gorical discrimination, depending on the
value of s. When s was relatively low,
classification decisions were accurate and
response allocation was a nonlinear (sigmoi-
dal) function of the log immediacy ratio.
When s was relatively large, decisions were
less accurate, and response allocation was
approximately a linear function of the log
immediacy ratio. They also showed that the
model provided a reasonably good fit to the
data from individual subjects.

Christensen and Grace (2008) extended
Grace and McLean’s (2006) model by propos-
ing that the distribution representing rein-
forcement history include the intervals be-
tween all stimulus transitions. Specifically, they
proposed that the criterion against which
terminal-link delays were judged as short or
long was determined by the delays between
initial-link onset and terminal-link entry, in
addition to the delays between terminal-link
entry and reinforcement. Christensen and
Grace showed that with this assumption, the
decision model predicted that preference for a
constant pair of terminal links was a bitonic
function of initial-link duration. Over a sub-
stantial range of initial-link durations, prefer-
ence decreased as initial-link duration in-
creased—the well-known ‘‘initial link effect’’
(Fantino, 1969). However, the model predict-
ed a downturn in preference for short initial-
link durations, which was confirmed by two
experiments.

Although Christensen and Grace’s (2008)
proposal addresses some of its limitations, the
decision model is still inadequate as a general
model for concurrent chains. One problem is
that the model includes no mechanism for
changes in preference across sessions. With the
PRBS procedure, relative terminal-link immedi-
acy is not predictable from prior sessions; thus,
after sufficient training, response allocation is

controlled by the current-session immediacy
ratio with little or no detectable effect of history.
Consequently, Grace and McLean (2006) as-
sumed that response strength for both alterna-
tives was reset to an intermediate value at the
start of each session ([MaxRS + MinRS] / 2). This
assumption cannot be valid for steady-state
designs, in which the terminal-link schedules
remain unchanged for 20 sessions or more.
Here the terminal-link immediacy ratio is
usually the same as that in the prior session
(except for the start of a new condition). To
account for the gradual acquisition of steady-
state preference (e.g., Grace, 2002), changes in
response strength that occur within sessions
need to persist, at least to some degree, across
sessions.

A simple way to extend Grace and McLean’s
(2006) model to account for changes in
response strength across sessions is to assume
that a constant fraction of the change in
response strength during a session is retained
at the start of the next session. Specifically:

RSstartN z1~RSstartN

z(RSendN�RSstartN ) � Ds
ð3Þ

where RSstart and RSend are response strengths
at the start and end of the session (subscripted
N or N+1) respectively, and Ds is a learning
rate parameter. With the addition of Equation
3, Grace and McLean’s decision model can
describe both within- and between-session
learning. Note that Ds is assumed to be
generally less than 1, so that response strength
at the start of session N+1 will have regressed
back towards the response strength at the start
of the previous session. Thus the model
predicts spontaneous recovery in choice be-
havior (Mazur, 1996).

It is important to note that the extended
decision model (ExtDM) was developed inde-
pendently of steady-state models for choice.
Unlike LINOP, it is not based on the
assumption that terminal-link stimuli acquire
conditioned reinforcing value, which in turn is
a function of the distribution of reinforcer
delays. Instead, the model assumes that the
relative likelihood of responding to each
initial link is updated according to a series of
binary decisions. The purpose of the present
research was to compare predictions of the
ExtDM and LINOP for a situation that is
intermediate between steady-state designs and
the PRBS procedure used by Grace et al.
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(2003) and Grace and McLean (2006). Specif-
ically, we studied changes in response alloca-
tion when the relative terminal-link reinforcer
immediacies followed a systematic ascending
and descending series. This is an intermediate
situation because the terminal-link immediacy
ratio changes every session, but the changes
are correlated because they follow a predict-
able pattern. In our experiment, the left
terminal link was always FI 8 s while the
schedule value for the right terminal link
changed from 2 s to 32 s and back to 2 s (or
from 32 s to 2 s to 32 s) through a geometri-
cally-spaced 17-step series.

Figure 1 shows predictions for this situation
by the ExtDM (left panel) and LINOP (right
panel). In both panels, the log initial-link
response ratio is plotted as a function of the
log FI schedule value for the right terminal
link. Predictions are shown for the 15 values
between 2 s and 32 s which were arranged
during both the descending and ascending
series. Predictions depend on the specific
parameter values used, but the qualitative
trends evident in Figure 1 are robust1. Both

models predict that preference for the left
terminal link (FI 8 s) is overall greater on the
descending than ascending series. This would
correspond to a hysteresis effect; at the start of
the descending series, the right terminal link
from the previous session is FI 32 s, and so a
nearly maximal preference for the left alter-
native should have been reached. However,
the models differ in terms of the strength of
preference for the shorter terminal link
depending on whether the right terminal link
is less than or greater than 8 s. The filled
symbols in Figure 1 indicate when the right
terminal link was 8 s, and divide both series
into halves in which the absolute values of the
log immediacy ratios are equal. According to
the LINOP model, the strength of preference
for the left alternative when the right delay is
greater than 8 s (i.e., points to the right of the
filled symbols) is the same as the strength of
preference for the right alternative when the
right delay is less than 8 s (i.e., points to the
left of the filled symbols). However, the ExtDM
predicts that the strength of preference should
be overall greater when the right delay is
longer than 8 s. This exemplifies the terminal-
link effect (MacEwen, 1972; Grace, 2004;
Grace & Bragason, 2004)—that preference
should be more extreme with overall longer
delays, with the delay ratio held constant.

METHOD

Subjects

Eight pigeons of mixed breed, numbered
221, 222, 223, 224, and 191, 192, 193, 194,

1 Parameter values for the models were as follows: For
the ExtDM, s 5 0.3, DS 5 0.3, D 5 0.3, and the maximum
and minimum response strengths for both alternatives
were 1.0 and 0.05, respectively. For LINOP, value was
defined as a power function of reinforcer immediacy with
exponent 5 2, and the learning rate parameters D and DS

were 0.5 and 0.3, respectively. To simulate each session,
the models’ predictions were computed over 12 cycles,
corresponding to 12 blocks of 6 cycles in concurrent
chains. The predicted log response ratio was calculated for
each cycle, and then averaged across cycles to give a value
for the session.

Fig. 1. Log initial-link response ratios as a function of log terminal-link immediacy ratios predicted by ExtDM and
LINOP. See text for more details.
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served as subjects and were maintained at 85%
of their free-feeding weight +/- 15 g through
appropriate postsession feeding. Subjects were
housed individually in a vivarium with a
12h:12h light/dark cycle (lights on at 0600),
with water and grit freely available in the home
cages. Pigeons 221, 222, 223, and 224 (Group
Experienced) were experienced with rapid-
acquisition concurrent-chains procedures and
had served as subjects in Grace, Bragason, and
McLean’s (2003) research just prior to the
start of the present study, whereas Pigeons 191,
192, 193 and 194 (Group Naı̈ve), although
experienced with other procedures, had no
prior training with rapid-acquisition concur-
rent chains.

Apparatus

Four standard three-key operant chambers,
32 cm deep 3 34 cm wide 3 34 cm high, were
used. The keys were 21 cm above the floor and
arranged in a row. In each chamber there was
a houselight located above the center key that
provided general illumination, and a grain
magazine with an aperture centered 6 cm
above the floor. The magazine was illuminated
when wheat was made available. A force of
approximately 0.15 N was necessary to operate
each key. Each chamber was enclosed in a
sound-attenuating box, and ventilation and
white noise were provided by an attached fan.
Experimental events were controlled and data
recorded through a microcomputer and
MEDPCH interface located in an adjacent
room.

Procedure

For all pigeons, training started immediately
in a concurrent-chains procedure. The house-
light provided general illumination at all times
except during reinforcer delivery. With few
exceptions, sessions were run daily and at
approximately the same time (1000h for
Group Experienced; 1200h for Group Naı̈ve).

Sessions ended after 72 initial- and terminal-
link cycles or 70 min, whichever occurred first.
At the start of a cycle, the side keys were
illuminated white to signal the initial links. An
entry was assigned pseudorandomly to the left
or right terminal link with the constraint that
in every six cycles, three entries occurred to
each terminal link. An initial-link response
produced an entry into a terminal link

provided that: (a) it was made to the prese-
lected key; (b) an interval selected from a VI
10-s schedule had timed out; and (c) a 1-s
changeover delay (COD) was satisfied— i.e., at
least 1 s had elapsed following a changeover to
the side for which terminal-link entry was
arranged.

The VI 10-s initial-link schedule did not
begin timing until the first response had
occurred in each cycle, to allow any pausing
after the completion of the previous terminal
link to be excluded from initial-link time. The
VI 10-s schedule contained 12 intervals con-
structed from an exponential progression
(Fleshler & Hoffman, 1962). Separate lists of
intervals were maintained for cycles in which
the left or right terminal link had been
selected, and were sampled without replace-
ment so that all 12 intervals would be used
three times for both the left and right terminal
links each session.

When a terminal link was entered, the color
of the side key was changed (left key to red,
right key to green) while the other key was
darkened. Terminal-link responses were rein-
forced according to FI schedules. When a
response was reinforced all lights in the
chamber were extinguished, and the grain
magazine raised and illuminated for 3 s.

The FI schedule value for the red (left)
terminal link was always 8 s, and the value for
the green (right) terminal link was one of the
following: 2, 2.38, 2.83, 3.36, 4, 4.76, 5.66, 6.73,
8, 9.51, 11.31, 13.45, 16, 19.03, 22.63, 26.91, or
32 s. The right terminal-link schedule values
were equally spaced in logarithmic terms, and
occurred in an ascending or descending series
across sessions. For example, the 2-s delay was
always followed by 2.38 s in the next session,
and 2.83 s in the session after that (i.e., in the
order listed above), whereas the 32-s delay was
always followed by delays in the reverse order
(i.e., 26.91 s in the next session, 22.63 s in the
session after that, etc.).

For 2 pigeons in Group Experienced (221
and 222), the right terminal link began at 2 s
and three ascending/descending series were
completed; for Pigeons 223 and 224, the right
terminal link began at 32 s and three descend-
ing/ascending series were completed. All
pigeons in Group Naı̈ve first received 21
sessions in which both terminal-link schedules
were FI 8 s. The purpose of this training was to
establish a baseline from which the effects of
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the ascending or descending series could be
assessed. Delays were then increased across
sessions to 32 s for Pigeons 191 and 192
according to the geometric series, and de-
creased across sessions to 2 s for Pigeons 193
and 194. All pigeons then completed three
descending/ascending series (191 and 192) or
ascending/descending series (193 and 194).

RESULTS

Figure 2 shows response allocation and the
programmed immediacy ratio plotted over
sessions for all subjects across the three
ascending and descending series. Figure 2
illustrates that response allocation for all
subjects in both groups tracked changes in
the immediacy ratio. Response allocation in-
creasingly favored the left initial link during the
ascending series (in which the right terminal
link changed from 2 s to 32 s), and the right
initial link during the descending series (in
which the right terminal link changed from
32 s to 2 s). Individual differences are also
apparent. For example, shifts in response
allocation were small and gradual across ses-
sions for some pigeons (e.g., 222, 223, 224 in
Group Experienced, and 192 in Group Naı̈ve),
corresponding to changes in the log immediacy
ratio, but large changes were evident for others
(e.g., Pigeons 221 and 193). There was a
pronounced bias toward the left initial link for
Pigeon 223, and to a lesser extent for Pigeons
193 and 194. Overall, there appears to be no
systematic difference between Group Experi-
enced and Naı̈ve in terms of changes in
response allocation across sessions.

To assess results in Figure 2 more systemat-
ically, individual-subject data were entered
into a repeated-measures analysis of variance
(ANOVA) with group (Naı̈ve or Experienced)
as a between-subjects factor and log immediacy
ratio, replication (first, second, or third
presentation of a series) and series (ascending
or descending) as within-subjects factors. The
main effects of series and log immediacy ratio
were significant, F(1,6) 5 28.96 and F(14,84)
5 42.73, both p , 0.01, respectively, whereas
those of group and replication were not,
F(1,6) 5 1.23 and F(2,12) 5 3.02, both ns.

There were two significant interactions,
replication x log immediacy ratio, F(28,168)
5 1.55, p , 0.05, and series x log immediacy
ratio, F(14,84) 5 4.39, p , 0.01. Analysis of

simple effects showed that response allocation
favored the right initial link relatively more
during the second replication when the delay
was 8 s and 9.51 s, and favored the left initial
link relatively more during the third replica-
tion when the delay was 16 s and 22.63 s.
Although reasons for these differences are
unclear, the effects were small and apparently
unsystematic in the context of the overall
changes in preference.

To highlight the series x log immediacy
interaction, Figure 3 shows log response ratio
as a function of the log terminal-link immedi-
acy ratio, averaged across replications. All
subjects responded relatively more to the left
initial link to a greater extent during the
descending series, especially for immediacy
ratios in the middle of the range, but response
allocation tended to converge at the most
extreme immediacy ratios. Overall, the pattern
might be described as a ‘‘bubble’’ near the
middle of the immediacy ratio range, and
indicates a hysteresis effect. This effect oc-
curred as follows: At the end of the ascending
series, the right terminal-link delay was 32 s
and response allocation strongly favored the
left key. The preference for the left key
persisted while the right-key delay decreased
during the descending series, but eventually
responding switched to favor the right when
the delay became sufficiently short. When the
delay was 2 s at the end of the descending
series, response allocation strongly favored the
right key. As the delay began to increase in the
ascending series, preference for the right key
persisted until the delay became sufficiently
long, when it switched to the left key. Thus, the
persistence in response allocation at the end
of both series produced an overall increased
preference for the left key in the descending
series, creating the bubble pattern. The
magnitude of this effect varied across subjects;
it was strong for Pigeons 221 and 191, but
relatively weak for Pigeons 222 and 223.
Nevertheless, results for all subjects showed
evidence of hysteresis.

To quantify the magnitude of the hysteresis
effect, we calculated the delay associated with
the midpoint of the range in response
allocation for both ascending and descending
series (averaged across replications). Specifi-
cally, we computed the average of the log
response ratios for the two most extreme
delays in each series and then, using linear
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Fig. 2. Obtained log initial-link response allocation and log programmed terminal-link immediacy ratios across all
three replications of the ascending/descending series for subjects in Group Experienced (Pigeons 221, 222, 223, and
224) and Naı̈ve (Pigeons 191, 192, 193, and 194).
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Fig. 3. Obtained log initial-link response ratios as a function of programmed log terminal-link immediacy ratios, for
both ascending and descending series, averaged across replications for individual subjects. Predictions of ExtDM and
LINOP are also shown by solid and dashed lines, respectively.
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interpolation, found the delay that corre-
sponded to this log ratio.

The midpoint delays and the corresponding
log response ratios are listed in Table 1. For all
subjects, midpoint delays were greater for the
ascending (M 5 15.39, SE 5 1.26) compared
to the descending series (M 5 8.43, SE 5
0.87). A repeated-measures ANOVA with
group as a between-subjects factor and series
as a within-subjects factor found a significant
effect of series, F(1,6) 5 34.37, p , 0.01, but
the effect of group and the series x group
interaction were nonsignificant. This demon-
strates that the magnitude of the hysteresis
effect was substantial, encompassing approxi-
mately one-quarter of the range of variation in
log immediacy ratio.

Next we compared the ability of LINOP and
the ExtDM to provide a quantitative account of
the present data. Log initial-link response
ratios were computed for every block of six
cycles in each session (i.e., 12 blocks per
session), then averaged across replications,
giving a total of 384 data points (12 3 32)
for each subject. The models were then fitted
by obtaining parameter estimates that maxi-
mized the variance accounted for in the data.
For LINOP the parameters included DS, which
determined the rate of learning across ses-
sions, and DR, which determined the rate of
learning within sessions. There was also a
sensitivity exponent, q, in the function deter-
mining the asymptotic value of a delayed
reinforcer, V 5 1 / (c + dq), where delay is d
seconds and c is an additive constant which was
set equal to 0 for the fits presented here (see
Grace, 2002, Equation 4). An additive bias
parameter, log b, was also used. Parameter

estimates that maximized the variance ac-
counted for were obtained through nonlinear
optimization (Microsoft ExcelE Solver).

Figure 4 shows the obtained log initial-link
response ratios as a function of LINOP
predictions for the individual block data (i.e.,
session twelfths). Slopes for best-fitting regres-
sions are also shown, and the slopes are close
to 1.0, suggesting that the LINOP model
captured the overall trends in the data.
Averaged across subjects, the LINOP model
accounted for 91% of the variance in the
session-12th data. However, there is some
evidence of sigmoidal curvature for some
subjects in Figure 4, indicating that the LI-
NOP predictions deviate systematically from
the obtained data. For example, Pigeons 221,
224, 192 and 194 appear to have obtained data
that follow a trend that begins below the
regression line at low predicted values and as
the predictions increase, falls above the
regression line. These subjects also have the
most pronounced bubble between series in the
session data (Figure 3), and suggest that
LINOP struggles to describe hysteresis effects
in response allocations. Parameter values for
the fits of the LINOP model to the session-
12th data are listed in Table 2.

The dashed lines in Figure 3 show the
whole-session average values (obtained and
predicted by the LINOP model) as a function
of the log immediacy ratio for both the
ascending and descending series. Predicted
values were calculated by averaging across the
predicted values for the session-12th data.
Overall, LINOP provided a reasonably good
account of the data, accounting for 85% of the
variance. LINOP was able to predict the

Table 1

Midpoint terminal-link delays (in seconds) and corresponding log response ratios for ascending
and descending series, for all subjects.

Delay Log Response Ratio

Pigeon Ascending Descending Pigeon Ascending Descending

221 14.92 10.09 221 0.24 20.13
222 15.11 10.65 222 0.17 0.07
223 10.95 6.85 223 0.37 0.28
224 21.11 7.97 224 0.15 20.13
191 14.79 5.44 191 0.17 0.06
192 17.21 11.47 192 0.24 0.12
193 10.62 5.03 193 0.31 20.09
194 18.42 9.95 194 0.39 0.33

Mean 15.39 8.43 Mean 0.26 0.06
SE 1.26 0.87 SE 0.03 0.06
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Fig. 4. The session-12th obtained log initial-link response ratios as a function of LINOP-predicted log immediacy
ratios for both ascending and descending series, averaged across replications for individual subjects. Included are the
regression lines, associated best fitting r2 values and linear regression parameters.
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separation between ascending and descending
series in the full-session data, corresponding to
the hysteresis effect. Additionally, LINOP was
able to capture some of the nonlinearity in the
full-session data (e.g., see Pigeons 221, 224,
and 194). However, LINOP appears to fail in
capturing some of the patterns of hysteresis. In
particular, the response patterns of Pigeons
221, 224, 191, 193 and 194 appear to show
evidence of little change in response ratios in
the beginning of the ascending series. LINOP
seems only able to capture this effect for
Pigeons 191 and 194 and fails to describe the
hysteresis in the ascending series for Pigeons
221, 224, and 193.

Next we applied the extended version of
Grace and McLean’s (2006) decision model
(Equations 1–2) to the data. The criterion
value was calculated for each session as the
average of the log programmed intervals
between stimulus transitions (i.e., initial-link
onset to terminal-link entry, and terminal-link
entry to reinforcement). The probability of the
relative current delay being judged short
relative to the criterion was then used in the
prediction of preference for the session-12th
data. The maximum and minimum response
strengths for both alternatives were initially set
equal to 1.0 and 0.01, respectively. Solver was
used to obtain best-fitting values of the
standard deviation (s), learning rate parame-
ter for the terminal links (D) and between-
session changes (DS), as well as an additive bias
parameter (log b). Thus, both the ExtDM and
LINOP had four free parameters. Parameter
values for the fits to the individual data are
listed in Table 3.

Figure 5 shows obtained log initial-link re-
sponse ratios as a function of ExtDM predic-
tions for the session-12th data. The best-fitting
regression lines are also shown. Overall, the
ExtDM did a good job of describing the session-
12th data, accounting for an average of 88% of
the variance. The regression slopes were also all
close to 1.0. However, there is some evidence of
curvature in the scatterplots that indicate that
predictions of the ExtDM, like those for
LINOP, sometimes deviate systematically from
the obtained values. For example, Pigeons 192,
193 and 223 appear to have obtained data that
follow a trend that begins below the regression
line at low predicted values and as the
predictions increase fall above the regression
line.

The solid lines in Figure 3 show the result-
ing session average values as a function of the
log immediacy ratio. The ExtDM provided an
excellent account of the data, with an average
VAC of 95% for the full-session data. The
ExtDM provided a good description of results
for subjects for which there was a clear
separation between the ascending and de-
scending series, as well as when the series
nearly superposed. For example, Pigeon 224
has a distinct separation between series, while
Pigeon 223 has almost identical curves for the
ascending and descending series. Compared
to the LINOP predictions Figure 3 appears to
show the ExtDM is able to capture both
patterns of responding. Moreover, the ExtDM
also appears to capture hysteresis in both
ascending and descending series. This is most
evident in subject 221, whose obtained and
predicted curves become flatter at the start of

Table 2

LINOP parameter and VAC values for fits to session 12th data.

LINOP

Session Session 12th

VAC q log b D Ds R2

Pigeon
221 0.89 2.25 20.19 0.13 0.54 0.81
222 0.95 0.91 20.01 0.17 1.00 0.91
223 0.96 1.04 0.32 0.58 0.27 0.88
224 0.89 1.09 20.05 0.13 0.36 0.79
191 0.87 1.41 0.23 0.03 1.00 0.84
192 0.89 1.18 0.04 0.17 0.38 0.82
193 0.95 1.70 0.25 0.37 0.28 0.90
194 0.92 1.23 0.18 0.05 1.00 0.83

Average 0.92 0.85
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both ascending and descending series. In
addition, the ExtDM seems to be a good
approximation of more linear patterns of
response allocation, for example with Pigeons
222 and 223.

Comparing the model fits, those for the
ExtDM were overall superior, with higher VAC
for 7 of 8 pigeons for the full-session data, and
for 6 of 8 (with one tie) for the session-12th
data. Because the models have the same
number of free parameters, this suggests that
the ExtDM may provide a better description of
response allocation for the present data.

However, even if two models have the same
number of parameters, one may have greater
flexibility in terms of being able to predict a
greater range of outcomes (Pitt, Myung, &
Zhang, 2002). If so, the model may account for
a higher percentage of variance than a com-
petitor because of this flexibility. Thus, to
determine whether the ExtDM and LINOP
differed in terms of flexibility, we conducted an
analysis in which both models were fitted to
simulated data generated by each model. The
simulated data were obtained by adding ran-
dom noise (distributed uniformly between
20.1 and 0.1) to the predicted values when
each model was fitted to the average session-
12th data. If either model is more flexible, then
it should provide not only the best account of
simulated data generated by that model, but an
equal or better account of data generated by
the other model as well. For simulated data
generated from the ExtDM, the ExtDM and
LINOP accounted for 93.5% and 86.4% of the
variance, respectively. For simulated data gen-
erated from LINOP, the ExtDM and LINOP

accounted for 87.1% and 93.5% of the variance.
In both cases, the model that generated the
simulated data provided the better fit. This
suggests that there is no difference in flexibility
between ExtDM and LINOP. We therefore
conclude that the ExtDM provides a better
overall account of the present data.

Finally we examined whether the terminal-
link effect—that is, a stronger preference for the
shorter terminal-link delay when the absolute
values of the delays increase with their ratio held
constant—was obtained in the present data and
whether the models could account for the
result. Figure 6 shows the obtained log response
ratios (full session) as a function of the absolute
value of the log immediacy ratio for individual
subjects, separately, according to whether the
terminal-link FI schedule for the right alterna-
tive was less than or greater than 8 s. Each data
point represents an average across the ascend-
ing and descending series. Because the 8-s
duration was the midpoint of both series, the
log immediacy ratios formed pairs with equal
absolute values. The terminal-link effect pre-
dicts that sensitivity to the log immediacy ratio,
as measured by the slope of the generalized-
matching function of the log immediacy and log
response allocation, should be greater when the
right terminal-link schedule was greater than 8 s
compared to when it was less than 8 s. Figure 6
shows that for all subjects the .8 s log response
ratios had a greater slope than the correspond-
ing , 8 s response ratios. Thus the data
exemplified the terminal-link effect, that is,
preference was more extreme with longer
absolute terminal-link duration as relative dura-
tion was held constant.

Table 3

ExtDM parameter and VAC values for fits to session 12th data.

ExtDM

Session Session 12th

VAC Log C s log b D Ds R2

Pigeon
221 0.97 0.90 0.09 20.64 0.21 0.41 0.90
222 0.99 0.90 0.34 20.06 0.10 1.49 0.95
223 0.97 0.90 0.34 0.31 0.27 0.45 0.88
224 0.93 0.90 0.26 20.16 0.11 0.36 0.83
191 0.89 0.90 0.17 0.04 0.03 0.69 0.85
192 0.95 0.90 0.22 20.09 0.18 0.26 0.88
193 0.92 0.90 0.16 0.04 0.26 0.22 0.88
194 0.96 0.90 0.25 0.06 0.04 1.50 0.87

Average 0.95 0.88
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Fig. 5. The session-12th obtained log initial-link response ratios as a function of ExtDM-predicted log immediacy
ratios for both ascending and descending series, averaged across replications for individual subjects. Included are the
regression lines, associated best fitting r2 values and linear regression parameters.
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Fig. 6. Log initial-link response ratios as a function of log terminal-link immediacy ratios for which the right terminal
link FI schedule was greater than or less than 8 s, for both ascending and descending series, averaged across replications
for individual subjects.
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Figure 7 shows the group averages for
predicted and obtained log response ratios
for both series when the terminal-link dura-
tion was less than or greater than 8 s (upper
left panel). Like the individual data, the
obtained data show steeper slopes in the
.8 s than the ,8 s log response ratios. The
ExtDM predictions in the upper right panel
(obtained by averaging across predictions for
the ascending and descending series in Fig-
ure 3) show the same pattern as the obtained
data. However, the corresponding LINOP
predictions have parallel slopes for the two
sets of conditions, indicating that LINOP
failed to predict the terminal-link effect.

DISCUSSION

The present study explored how initial link
response allocation in concurrent chains

changed when one terminal-link delay fol-
lowed an ascending and descending sequence
across sessions while the other remained
constant. Our goal was to test predictions of
two models for acquisition in concurrent
chains: an extended version of the decision
model proposed by Grace and McLean (2006)
and Christensen and Grace (2008), and the
LINOP model (Grace, 2002). The decision
model had previously been applied only to
situations in which the terminal links changed
unpredictably across sessions. Here, we as-
sumed that a proportion of the change in
response strength within a session would be
retained at the start of the next session.

The terminal-link schedule for the left
alternative was always FI 8 s, while the right
terminal-link schedule varied between FI 2 s
and FI 32 s according to a geometric series. Two
predictions of the ExtDM were evaluated: that a

Fig. 7. Obtained log initial-link response ratios (top panel) and predictions of ExtDM (upper right panel) and
LINOP (bottom panel) as a function of log terminal-link immediacy ratios for which the right terminal-link FI schedule
was greater than or less than 8 s, for both ascending and descending series, averaged across replications and subjects.
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hysteresis or carryover effect would be obtained,
and that response allocation would be more
sensitive to changes in the immediacy ratio at
higher absolute terminal-link durations (see
Figure 1). Both predictions were confirmed.

For all subjects, scatterplots of the log initial-
link response and log immediacy ratios
showed a gap or ‘‘bubble’’ between data for
the ascending and descending series (see
Figure 3). This phenomenon occurred be-
cause the series tended to converge at the
extreme immediacy ratios, whereas for inter-
mediate ratios the log response ratio tended to
favor the left initial link to a greater extent
during the descending series. Because the
descending series began after the right-key
delay expected to produce maximal prefer-
ence for the left key (32 s), the left-key bias
during the descending series represents a
hysteresis effect. This effect was also exempli-
fied by indifference points (i.e., the right
terminal-link delay associated with the mid-
point of the total shift in preference; see
Table 1) that were greater for the ascending
than descending series. Both LINOP and the
ExtDM predicted the hysteresis effect.

This result is similar to that reported by Field,
Tonneau, Ahearn and Hineline (1996), who
studied pigeons’ choices between FR 30 and VR
60 terminal links in concurrent chains. Across
successive phases of their experiment, the VR
distribution was manipulated such that the
minimum response requirement was changed
according to an ascending and descending
series. Preference for the VR alternative tracked
the minimum requirement; a requirement of 1
produced a strong preference for the VR
terminal link, and this preference decreased as
the requirement was increased up to 15. Field et
al. found that for a given minimum require-
ment, preference for the VR alternative was
greater on the ascending than descending
series, which is analogous to the hysteresis effect
reported here. However, one difference is that
each phase in Field et al.’s experiment lasted for
11 sessions. Thus, despite the differences in
procedure (e.g., interval versus ratio schedules;
schedules changed after 1 and 11 sessions),
both experiments produced similar hysteresis
effects. It is unknown whether such hysteresis
depends on how frequently the terminal links
are changed.

Overall, the ExtDM provided a very good
account of the data in quantitative terms,

accounting for an average of 88% of the
variance in the session-12th data and 95% of
the variance in the session data. These are
somewhat higher than the corresponding
values for LINOP (85% and 92%), as well as
for the fits of the original version of the
decision model to Grace and McLean’s (2006)
data (73% and 84%). However, it is worth
noting that there was some evidence of
systematic deviation in the obtained versus
predicted scatterplots for the session-12th data
(see Figure 5), indicating that the ExtDM was
unable to capture all of the trends in the data.

We also tested whether preference for the
shorter terminal link would increase as overall
terminal-link duration increased, with the
immediacy ratio held constant. This result is
known as the terminal-link effect, and has
been one of the most widely-studied phenom-
ena in concurrent chains, having been ob-
tained when terminal links differ in terms of
reinforcer magnitude (Navarick & Fantino,
1976) and probability (Spetch & Dunn, 1989),
as well as immediacy (Grace & Bragason, 2004;
Grace, 2004; MacEwen, 1972; Williams &
Fantino, 1978). In the present experiment,
the delays were geometrically spaced so the
ratios between 1:1 and 4:1 were the reverse of
those between 1:4 and 1:1. Thus we could
compare sessions in which the delays were
either both less than 8 s, or both greater than
8 s, with the ratio of delays held constant. For
all subjects, the slope relating log response
allocation to the log immediacy ratio was
steeper when the delays were greater than 8 s
(Figure 6). This result was predicted by the
ExtDM, but not LINOP (Figure 7).

How the ExtDM Accounts for the
Terminal-Link Effect

The terminal-link effect has been considered
one of the most theoretically interesting results
in concurrent chains, because it represents a
striking violation of Weber’s law in the temporal
domain: Relative discrimination (i.e., response
allocation) is not constant at constant delay
ratios (Gibbon, 1977). No single explanation
for the terminal-link effect is universally accept-
ed, although it is predicted by all viable models
for steady-state choice in concurrent chains
such as delay-reduction theory (Fantino, 1969;
Fantino & Romanowich, 2007), the contextual
choice model (Grace, 1994), and the hyperbolic
value-added model (Mazur, 2001). It is thus

ASCENDING AND DESCENDING DELAYS 17



worth considering how the ExtDM is able to
account for the terminal-link effect.

Christensen and Grace (2008) showed that
the asymptotic response allocation predicted
by the ExtDM could be described with the
following equation:

BL

BR
~

RSasympL

RSasympR

~
psLMaxRSz 1{psLð ÞMinRS

psR MaxRSz 1{psRð ÞMinRS
,

ð4Þ

In which B indicates initial-link responses,
RSasymp the asymptotic response strength, and
ps is the probability that a terminal-link delay is
judged short, subscripted for the left and right
alternatives. MaxRS and MinRS are the maxi-
mum and minimum response strengths (set
equal to 1.0 and 0.01, respectively). Equation 4
predicts that response allocation is determined
by the relative strength of responding to the
initial links, which in turn is calculated as a
weighted average of the maximum and mini-
mum response strengths, depending on the
probability that a terminal-link delay is judged
short relative to the criterion. This probability
is the inverse of the cumulative normal
distribution with mean equal to the criterion
(log C), and a standard deviation s :

ps~1{W log D, log C ,sð Þ ð5Þ
where W is the cumulative normal distribution
and D is the terminal-link delay to reinforce-
ment.

To illustrate how the ExtDM predicts the
terminal-link effect, we used Equations 4 and 5
to calculate the predicted response allocation
for a series of terminal-link schedules in which
the delay ratio was always 1:2 while the absolute
durations varied from FI 2 s FI 4 s to FI 37 s FI
74 s (specific values were determined by a
geometric series in which the schedules were
increased by 20% at each step). The initial-link
schedule was VI 10 s, and s 5 0.2.

Figure 8 shows how the ExtDM predicts the
terminal-link effect. Displayed are the proba-
bilities that reinforcer delays associated with
the FI x (left) and FI 2x (right) terminal links
are judged short (ps) as x ranges from 2 s to
37 s. Preference for the shorter terminal link
increases as a negatively-accelerated function
of x, as illustrated by the filled squares in the
right panel. Depending on the range of
terminal-link durations and specific parameter
values chosen, the model can predict a
downturn in preference at higher overall
durations (i.e., a bitonic function). With VI
terminal links, Grace (2004) found that
preference increased as a negatively accelerat-
ed function of terminal-link duration, and
Gentry and Marr (1980) reported that with FI
terminal links, preference for some subjects
showed a downturn at high absolute durations
(although the results were not obtained for all
subjects).

The left panel of Figure 8 shows that the
criterion (log C) increases monotonically as a
function of x. The probabilities that delays are

Fig. 8. Illustration of how the ExtDM predicts the terminal-link effect. The left panel shows Log C as a function of the
shorter terminal-link delay. The right panel shows the probabilities that the shorter (FI x) and longer (FI 2x) delays were
judged short relative to the criterion (x’s and *’s, respectively; left axis), and the resulting predicted log response
allocation (filled squares, right axis).
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judged short (ps) are displayed in the right
panel. For very small values of x, ps is high for
both schedules because both delays are short
relative to log C, which is determined jointly by
the initial and terminal-link schedules. As x
increases, ps falls more steeply for the longer
terminal link at first, leading to an increasing
preference for FI x. However, as durations
increase, ps decreases less rapidly for FI x,
resulting in a flattening and eventual down-
turn in preference. Thus, the model predicts
that the shape of the terminal-link effect arises
from different rates of change in ps for the two
alternatives as the overall terminal-link dura-
tion increases.

The explanation for the terminal-link effect
provided by the decision model resembles, to
some extent, that provided by delay-reduction
theory (DRT; Fantino, 1969; Fantino & Roma-
nowich, 2007). Log C plays a role similar to that
of the average delay to reinforcement from the
onset of the initial links in DRT (T). According
to DRT, conditioned reinforcing effectiveness
is a function of the difference between T and
the terminal-link delay to reinforcement. Pref-
erence is determined by relative conditioned
reinforcing effectiveness, which increases as
absolute terminal-link duration increases with
the ratio held constant. T, like Log C, depends
on both initial- and terminal-link durations,
and serves as a comparator in determining
preference. However, the models differ in the
details of the comparator process, and the use
of linear or logarithmically-scaled delays. DRT
is also unable to predict a downturn in
preference as absolute terminal-link duration
increases (see Grace, 2004).

We calculated the criterion as the average of
the log initial and terminal-link delays in each
session, but a more realistic assumption would
be to presume that there is a specific mecha-
nism for updating the criterion. Perhaps the
simplest way to accomplish this is to calculate
the criterion as an exponentially weighted
moving average (Killeen, 1981) of the delays
between reward-correlated stimulus transitions:

log CN z1~b log DNð Þz 1{bð Þ log CN ð6Þ

where log CN and log CN-1 are the criterion
values after stimulus transitions N and N-1,
respectively, log DN is the Nth stimulus-transi-
tion delay, and b is a parameter that determines
how much weight to give to the most recent

delay. Note that N does not correspond to cycle
number, as in Equation 3, because the criterion
is updated twice per cycle—first after terminal-
link entry (i.e., the initial-link -. terminal-link
onset delay), and then again after food delivery
(i.e., the terminal link -. food delay). With the
addition of Equation 6, the model can be
applied to situations in which the criterion
might shift within sessions, for example, in
which the initial- or terminal-link schedules are
changed during a session. A goal for future
research will be to explore how preference
adapts in such situations, and whether Equa-
tion 6 is adequate as a representation of the
criterion in the model.

Finally, it is worth noting that the assumption
in the ExtDM that a fraction of the change in
response strength during a session carries over
to the next session provides a natural explana-
tion for spontaneous recovery in choice behav-
ior. For example, Mazur (1995, 1996) found
that when the proportion of reinforcers deliv-
ered by an alternative was changed midway
through a session (e.g., from 10% to 90%),
pigeons’ response allocation would shift (e.g.,
from 10% to 75%), but at the start of the next
session would have reverted to an earlier
percentage (e.g., 45%). Mazur proposed that
this effect, which resembles spontaneous recov-
ery, could be accounted for by assuming that
the response strengths at the start of a session
were determined by a weighted average of the
several previous sessions. The ExtDM can
predict the same result through a different
but arguably simpler mechanism.

Thus, our results show that the extended
version of Grace and McLean’s (2006) deci-
sion model can be applied effectively to a
situation in which terminal-link delays change
systematically across sessions. The model’s
ability to predict the terminal-link effect in
the present data, combined with Christensen
and Grace’s (2008) demonstration that the
model can account for the initial-link effect,
raises the possibility that the decision model
may eventually provide a unified account of
choice in concurrent chains under both
acquisition and steady-state conditions.
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